DNA Damage and Repair Hypoxia Provokes Base Excision Repair Changes and a Repair-Deficient, Mutator Phenotype in Colorectal Cancer Cells

نویسندگان

  • Bradly G. Wouters
  • Peter G. Wells
  • Steven Gallinger
  • Robert G. Bristow
چکیده

Regions of acute and chronic hypoxia exist within solid tumors and can lead to increased rates ofmutagenesis and/ or altered DNA damage and repair protein expression. Base excision repair (BER) is responsible for resolving small, non–helix-distorting lesions from the genome that potentially cause mutations by mispairing or promoting DNA breaks during replication. Germline and somatic mutations in BER genes, such as MutY Homolog (MUTYH/ MYH) and DNA-directed polymerase (POLB), are associated with increased risk of colorectal cancer. However, very little is known about the expression and function of BER proteins under hypoxic stress. Using conditions of chronic hypoxia, decreased expression of BER proteins was observed because of a mechanism involving suppressed BER protein synthesis in multiple colorectal cancer cell lines. Functional BER was impaired as determined by MYHand 8-oxoguanine (OGG1)–specific glycosylase assays. A formamidopyrimidine-DNA glycosylase (Fpg) Comet assay revealed elevated residual DNA base damage in hypoxic cells 24 hours after H2O2 treatment as compared with normoxic controls. Similarly, high-performance liquid chromatography analysis demonstrated that 8-oxo-20-deoxyguanosine lesions were elevated in hypoxic cells 3 and 24 hours after potassium bromate (KBrO3) treatment when compared with aerobic cells. Correspondingly, decreased clonogenic survival was observed following exposure to the DNA base damaging agents H2O2 and MMS, but not to the microtubule interfering agent paclitaxel. Thus, a persistent downregulation of BER components by the microenvironment modifies and facilitates a mutator phenotype, driving genetic instability and cancer progression. Implications:Aberrant BER is a contributing factor for the observed genetic instability in hypoxic tumor cells.Mol Cancer Res; 12(10); 1407–15. 2014 AACR.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hypoxia provokes base excision repair changes and a repair-deficient, mutator phenotype in colorectal cancer cells.

UNLABELLED Regions of acute and chronic hypoxia exist within solid tumors and can lead to increased rates of mutagenesis and/or altered DNA damage and repair protein expression. Base excision repair (BER) is responsible for resolving small, non-helix-distorting lesions from the genome that potentially cause mutations by mispairing or promoting DNA breaks during replication. Germline and somatic...

متن کامل

ntextual” Synthetic Lethality and/or Loss of erozygosity: Tumor Hypoxia and ification of DNA Repair

wnloade oxia exists in every solid tumor and is associated with poor prognosis because of both local and ic therapeutic resistance. Recent studies have focused on the interaction between tumor cell genetd the dynamic state of oxygenation and metabolism. Hypoxia generates aggressive tumor cell phees in part owing to ongoing genetic instability and a “mutator” phenotype. The latter may be due to ...

متن کامل

Base excision repair fidelity in normal and cancer cells.

In mammalian cells, base excision repair (BER) is the major repair pathway involved in the removal of non-bulky damaged nucleotides. The fidelity of BER is dependent on the polymerization step, where the major BER DNA polymerase (Pol beta) must incorporate the correct Watson-Crick base paired nucleotide into the one nucleotide repair gap. Recent studies have indicated that expression of some Po...

متن کامل

Dna Repair

1. DNA Damage 1.1. Spontaneous Alterations of DNA (by Mutator Genes) 1.2. Environmental Damage to DNA 2. DNA Repair by Reversal of Damage Without Excision 2.1. Photoreactivation 2.2. Repair of O-Alkylguanine and Alkylthymine Without DNA trand Excision 3. Base Excision Repair in Non-Mammalian Cells 3.1. DNA Glycosylase in Non-Mammalian Cells 4. Base Excision Repair in Mammalian Cells 4.1. DNA Gl...

متن کامل

Yeast MPH1 gene functions in an error-free DNA damage bypass pathway that requires genes from Homologous recombination, but not from postreplicative repair.

The MPH1 gene from Saccharomyces cerevisiae, encoding a member of the DEAH family of proteins, had been identified by virtue of the spontaneous mutator phenotype of respective deletion mutants. Genetic analysis suggested that MPH1 functions in a previously uncharacterized DNA repair pathway that protects the cells from damage-induced mutations. We have now analyzed genetic interactions of mph1 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014